Predictive performance of penalized beta regression model for continuous bounded outcomes
نویسندگان
چکیده
منابع مشابه
Penalized Estimators in Cox Regression Model
The proportional hazard Cox regression models play a key role in analyzing censored survival data. We use penalized methods in high dimensional scenarios to achieve more efficient models. This article reviews the penalized Cox regression for some frequently used penalty functions. Analysis of medical data namely ”mgus2” confirms the penalized Cox regression performs better than the cox regressi...
متن کاملPredictive factors of glycosylated hemoglobin using additive regression model
Introduction: Diabetes is a chronic disease, non-epidemic disease that costs a lot of money in each year. One of the diagnostic criteria for diabetes is Glycosylated Hemoglobin (HBA1C), which in this study the effective factors on it examined by additive regression model. Materials and Methods: In this cross-sectional study, 130 patients with diabetes type-2 were selected based on simple random...
متن کاملSpatial Beta Regression Model with Random Effect
Abstract: In many applications we have to encountered with bounded dependent variables. Beta regression model can be used to deal with these kinds of response variables. In this paper we aim to study spatially correlated responses in the unit interval. Initially we introduce spatial beta generalized linear mixed model in which the spatial correlation is captured through a random effect. T...
متن کاملPenalized Regression with Model-Based Penalties
Nonparametric regression techniques such as spline smoothing and local tting depend implicitly on a parametric model. For instance, the cubic smoothing spline estimate of a regression function based on observations ti; Yi is the minimizer of P(Yi (ti))2 + R ( 00)2. Since R ( 00)2 is zero when is a line, the cubic smoothing spline estimate favors the parametric model (t) = 0+ 1t: Here we conside...
متن کاملPredictive model for wall-bounded turbulent flow.
The behavior of turbulent fluid motion, particularly in the thin chaotic fluid layers immediately adjacent to solid boundaries, can be difficult to understand or predict. These layers account for up to 50% of the aerodynamic drag on modern airliners and occupy the first 100 meters or so of the atmosphere, thus governing wider meteorological phenomena. The physics of these layers is such that th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Statistics
سال: 2017
ISSN: 0266-4763,1360-0532
DOI: 10.1080/02664763.2017.1339024